PabloMK7 dc1ebb63cb Major revamps to match game loading decisions.
- Allow downloading titles from eshop and system settings
- Remove encrypted game support
2025-02-27 14:22:50 +01:00

375 lines
10 KiB
C++

// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <optional>
#include <sstream>
#include <boost/iostreams/device/file_descriptor.hpp>
#include <boost/iostreams/stream.hpp>
#include <cryptopp/aes.h>
#include <cryptopp/modes.h>
#include "common/common_paths.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/file_sys/certificate.h"
#include "core/file_sys/otp.h"
#include "core/hle/service/fs/archive.h"
#include "core/hw/aes/arithmetic128.h"
#include "core/hw/aes/key.h"
#include "core/hw/default_keys.h"
#include "core/hw/rsa/rsa.h"
#include "core/loader/loader.h"
namespace HW::AES {
namespace {
// The generator constant was calculated using the 0x39 KeyX and KeyY retrieved from a 3DS and the
// normal key dumped from a Wii U solving the equation:
// NormalKey = (((KeyX ROL 2) XOR KeyY) + constant) ROL 87
// On a real 3DS the generation for the normal key is hardware based, and thus the constant can't
// get dumped. Generated normal keys are also not accessible on a 3DS. The used formula for
// calculating the constant is a software implementation of what the hardware generator does.
AESKey generator_constant;
AESKey HexToKey(const std::string& hex) {
if (hex.size() < 32) {
throw std::invalid_argument("hex string is too short");
}
AESKey key;
for (std::size_t i = 0; i < key.size(); ++i) {
key[i] = static_cast<u8>(std::stoi(hex.substr(i * 2, 2), nullptr, 16));
}
return key;
}
std::vector<u8> HexToVector(const std::string& hex) {
std::vector<u8> vector(hex.size() / 2);
for (std::size_t i = 0; i < vector.size(); ++i) {
vector[i] = static_cast<u8>(std::stoi(hex.substr(i * 2, 2), nullptr, 16));
}
return vector;
}
std::optional<std::size_t> ParseCommonKeyName(const std::string& full_name) {
std::size_t index;
int end;
if (std::sscanf(full_name.c_str(), "common%zd%n", &index, &end) == 1 &&
end == static_cast<int>(full_name.size())) {
return index;
} else {
return std::nullopt;
}
}
std::optional<std::pair<std::size_t, std::string>> ParseNfcSecretName(
const std::string& full_name) {
std::size_t index;
int end;
if (std::sscanf(full_name.c_str(), "nfcSecret%zd%n", &index, &end) == 1) {
return std::make_pair(index, full_name.substr(end));
} else {
return std::nullopt;
}
}
std::optional<std::pair<std::size_t, char>> ParseKeySlotName(const std::string& full_name) {
std::size_t slot;
char type;
int end;
if (std::sscanf(full_name.c_str(), "slot0x%zXKey%c%n", &slot, &type, &end) == 2 &&
end == static_cast<int>(full_name.size())) {
return std::make_pair(slot, type);
} else {
return std::nullopt;
}
}
struct KeySlot {
std::optional<AESKey> x;
std::optional<AESKey> y;
std::optional<AESKey> normal;
void SetKeyX(std::optional<AESKey> key) {
x = key;
GenerateNormalKey();
}
void SetKeyY(std::optional<AESKey> key) {
y = key;
GenerateNormalKey();
}
void SetNormalKey(std::optional<AESKey> key) {
normal = key;
}
void GenerateNormalKey() {
if (x && y) {
normal = Lrot128(Add128(Xor128(Lrot128(*x, 2), *y), generator_constant), 87);
} else {
normal.reset();
}
}
void Clear() {
x.reset();
y.reset();
normal.reset();
}
};
std::array<KeySlot, KeySlotID::MaxKeySlotID> key_slots;
std::array<std::optional<AESKey>, MaxCommonKeySlot> common_key_y_slots;
std::array<std::optional<AESKey>, NumDlpNfcKeyYs> dlp_nfc_key_y_slots;
std::array<NfcSecret, NumNfcSecrets> nfc_secrets;
AESIV nfc_iv;
AESKey otp_key;
AESIV otp_iv;
KeySlot movable_key;
KeySlot movable_cmac;
struct KeyDesc {
char key_type;
std::size_t slot_id;
// This key is identical to the key with the same key_type and slot_id -1
bool same_as_before;
};
void LoadPresetKeys() {
auto s = GetKeysStream();
std::string mode = "";
while (!s.eof()) {
std::string line;
std::getline(s, line);
// Ignore empty or commented lines.
if (line.empty() || line.starts_with("#")) {
continue;
}
if (line.starts_with(":")) {
mode = line.substr(1);
continue;
}
if (mode != "AES") {
continue;
}
const auto parts = Common::SplitString(line, '=');
if (parts.size() != 2) {
LOG_ERROR(HW_AES, "Failed to parse {}", line);
continue;
}
const std::string& name = parts[0];
const auto nfc_secret = ParseNfcSecretName(name);
if (nfc_secret) {
auto value = HexToVector(parts[1]);
if (nfc_secret->first >= nfc_secrets.size()) {
LOG_ERROR(HW_AES, "Invalid NFC secret index {}", nfc_secret->first);
} else if (nfc_secret->second == "Phrase") {
nfc_secrets[nfc_secret->first].phrase = value;
} else if (nfc_secret->second == "Seed") {
nfc_secrets[nfc_secret->first].seed = value;
} else if (nfc_secret->second == "HmacKey") {
nfc_secrets[nfc_secret->first].hmac_key = value;
} else {
LOG_ERROR(HW_AES, "Invalid NFC secret '{}'", name);
}
continue;
}
AESKey key;
try {
key = HexToKey(parts[1]);
} catch (const std::logic_error& e) {
LOG_ERROR(HW_AES, "Invalid key {}: {}", parts[1], e.what());
continue;
}
const auto common_key = ParseCommonKeyName(name);
if (common_key) {
if (common_key >= common_key_y_slots.size()) {
LOG_ERROR(HW_AES, "Invalid common key index {}", common_key.value());
} else {
common_key_y_slots[common_key.value()] = key;
}
continue;
}
if (name == "generatorConstant") {
generator_constant = key;
continue;
}
if (name == "otpKey") {
otp_key = key;
continue;
}
if (name == "otpIV") {
otp_iv = key;
continue;
}
if (name == "movableKeyY") {
movable_key.SetKeyY(key);
continue;
}
if (name == "movableCmacY") {
movable_cmac.SetKeyY(key);
continue;
}
if (name == "dlpKeyY") {
dlp_nfc_key_y_slots[DlpNfcKeyY::Dlp] = key;
continue;
}
if (name == "nfcKeyY") {
dlp_nfc_key_y_slots[DlpNfcKeyY::Nfc] = key;
continue;
}
if (name == "nfcIv") {
nfc_iv = key;
continue;
}
const auto key_slot = ParseKeySlotName(name);
if (!key_slot) {
LOG_ERROR(HW_AES, "Invalid key name '{}'", name);
continue;
}
if (key_slot->first >= MaxKeySlotID) {
LOG_ERROR(HW_AES, "Out of range key slot ID {:#X}", key_slot->first);
continue;
}
switch (key_slot->second) {
case 'X':
key_slots.at(key_slot->first).SetKeyX(key);
break;
case 'Y':
key_slots.at(key_slot->first).SetKeyY(key);
break;
case 'N':
key_slots.at(key_slot->first).SetNormalKey(key);
break;
default:
LOG_ERROR(HW_AES, "Invalid key type '{}'", key_slot->second);
break;
}
}
}
} // namespace
std::istringstream GetKeysStream() {
const std::string filepath = FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir) + KEYS_FILE;
FileUtil::CreateFullPath(filepath); // Create path if not already created
boost::iostreams::stream<boost::iostreams::file_descriptor_source> file;
FileUtil::OpenFStream<std::ios_base::in>(file, filepath);
std::istringstream ret;
if (file.is_open()) {
return std::istringstream(std::string(std::istreambuf_iterator<char>(file), {}));
} else {
// The key data is encrypted in the source to prevent easy access to it for unintended
// purposes.
std::vector<u8> kiv(16);
std::string s(default_keys_enc_size, ' ');
CryptoPP::CBC_Mode<CryptoPP::AES>::Decryption(kiv.data(), kiv.size(), kiv.data())
.ProcessData(reinterpret_cast<u8*>(s.data()), default_keys_enc, s.size());
return std::istringstream(s);
}
}
void InitKeys(bool force) {
static bool initialized = false;
if (initialized && !force) {
return;
}
initialized = true;
LoadPresetKeys();
movable_key.SetKeyX(key_slots[0x35].x);
movable_cmac.SetKeyX(key_slots[0x35].x);
HW::RSA::InitSlots();
HW::ECC::InitSlots();
}
void SetKeyX(std::size_t slot_id, const AESKey& key) {
key_slots.at(slot_id).SetKeyX(key);
}
void SetKeyY(std::size_t slot_id, const AESKey& key) {
key_slots.at(slot_id).SetKeyY(key);
}
void SetNormalKey(std::size_t slot_id, const AESKey& key) {
key_slots.at(slot_id).SetNormalKey(key);
}
bool IsKeyXAvailable(std::size_t slot_id) {
return key_slots.at(slot_id).x.has_value();
}
bool IsNormalKeyAvailable(std::size_t slot_id) {
return key_slots.at(slot_id).normal.has_value();
}
AESKey GetNormalKey(std::size_t slot_id) {
return key_slots.at(slot_id).normal.value_or(AESKey{});
}
void SelectCommonKeyIndex(u8 index) {
key_slots[KeySlotID::TicketCommonKey].SetKeyY(common_key_y_slots.at(index));
}
void SelectDlpNfcKeyYIndex(u8 index) {
key_slots[KeySlotID::DLPNFCDataKey].SetKeyY(dlp_nfc_key_y_slots.at(index));
}
bool NfcSecretsAvailable() {
auto missing_secret =
std::find_if(nfc_secrets.begin(), nfc_secrets.end(), [](auto& nfc_secret) {
return nfc_secret.phrase.empty() || nfc_secret.seed.empty() ||
nfc_secret.hmac_key.empty();
});
SelectDlpNfcKeyYIndex(DlpNfcKeyY::Nfc);
return IsNormalKeyAvailable(KeySlotID::DLPNFCDataKey) && missing_secret == nfc_secrets.end();
}
const NfcSecret& GetNfcSecret(NfcSecretId secret_id) {
return nfc_secrets[secret_id];
}
const AESIV& GetNfcIv() {
return nfc_iv;
}
std::pair<AESKey, AESIV> GetOTPKeyIV() {
return {otp_key, otp_iv};
}
const AESKey& GetMovableKey(bool cmac_key) {
return cmac_key ? movable_cmac.normal.value() : movable_key.normal.value();
}
} // namespace HW::AES